Dyck paths and partial Bell polynomials

نویسندگان

  • Toufik Mansour
  • Yidong Sun
چکیده

In the present paper, we consider two kinds of statistics “number of usegments” and “number of internal u-segments” in Dyck paths. More precisely, using Lagrange inversion formula we present the generating function for the number of Dyck paths according to semilength and our new statistics by the partial Bell polynomials, namely, ∑ D∈Dn ∏ i≥1 t αi(D) i = n ∑ i=1 1 (n− i+ 1)!n,i ( 1!t1, 2!t2, · · · ) , ∑ D∈Dn ∏ i≥1 t βi(D) i = n ∑

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 5 . 12 73 v 1 [ m at h . C O ] 9 M ay 2 00 8 BELL POLYNOMIALS AND k - GENERALIZED DYCK PATHS

Abstract. A k-generalized Dyck path of length n is a lattice path from (0, 0) to (n, 0) in the plane integer lattice Z × Z consisting of horizontal-steps (k, 0) for a given integer k ≥ 0, up-steps (1, 1), and down-steps (1,−1), which never passes below the x-axis. The present paper studies three kinds of statistics on k-generalized Dyck paths: ”number of u-segments”, ”number of internal u-segme...

متن کامل

On the Number of Restricted Dyck Paths

In this note we examine the number of integer lattice paths consisting of up-steps (1, 1) and down-steps (1,−1) that do not touch the lines y = m and y = −k, and in particular Theorem 3.2 in [P. Mladenović, Combinatorics, Mathematical Society of Serbia, Belgrade, 2001]. The theorem is shown to be incorrect for n > m + k + min(m, k), and using similar combinatorial technique we proved the upper ...

متن کامل

Counting Segmented Permutations Using Bicoloured Dyck Paths

A bicoloured Dyck path is a Dyck path in which each up-step is assigned one of two colours, say, red and green. We say that a permutation π is σ-segmented if every occurrence o of σ in π is a segment-occurrence (i.e., o is a contiguous subword in π). We show combinatorially the following results: The 132-segmented permutations of length n with k occurrences of 132 are in one-to-one corresponden...

متن کامل

Bi-banded paths, a bijection and the Narayana numbers

We find a bijection between bi-banded paths and peak-counting paths, applying to two classes of lattice paths including Dyck paths. Thus we find a new interpretation of Narayana numbers as coefficients of weight polynomials enumerating bi-banded Dyck paths, which class of paths has arisen naturally in previous literature in a solution of the stationary state of the ‘TASEP’ stochastic process.

متن کامل

Omega and PIv Polynomial in Dyck Graph-like Z(8)-Unit Networks

Design of crystal-like lattices can be achieved by using some net operations. Hypothetical networks, thus obtained, can be characterized in their topology by various counting polynomials and topological indices derived from them. The networks herein presented are related to the Dyck graph and described in terms of Omega polynomial and PIv polynomials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2008